X

Interested in the Harquail School of Earth Sciences?

Fill out this form and we will contact you with details about our programs!

Learn More!
?

Publication Type:

Journal Article

Source:

Minerals, Volume 9, Number 3, p.1-14 (2019)

ISBN:

2075-163X

URL:

https://www.mdpi.com/2075-163X/9/3/145

Keywords:

archean ore systems, hard rock exploration, Mineral exploration, seismic reflection methods

Abstract:

<p>The Metal Earth project acquired 927 km of deep seismic reflection profiles from August to November of 2017. Seismic data acquired in this early stage of the Metal Earth project benefited greatly from recent advances in the petroleum sector as well as those in mineral exploration. Vibroseis acquisition with receivers having a 5 Hz response (10 dB down) generated records from a sweep signal starting at 2 Hz, sweeping up to 150 Hz or 200 Hz. Not only does this broadband signal enhance reflections from the deepest to the shallowest crust, but it also helps the use of full waveform inversion (e.g., to mitigate cycle-skipping) and related techniques. Metal Earth regional-scale transects using over 5000 active sensors target mineralizing fluid pathways throughout the crust, whereas higher spatial-resolution reflection and full-waveform surveys target structures at mine camp scales. Because Metal Earth was proposed to map and compare entire Archean ore and geologically similar non-ore systems, regional sections cover the entire crust to the Moho in the Abitibi and Wabigoon greenstone belts of the Superior craton in central Canada. Where the new sections overlap with previous Lithoprobe surveys, a clear improvement in reflector detection and definition is observed. Improvements are here attributed to the increased bandwidth of the signal, better estimates of refraction and reflection velocities used in processing, and especially the pre-stack time migration of the data.</p>