X

Interested in the Harquail School of Earth Sciences?

Fill out this form and we will contact you with details about our programs!

Learn More!
?

Publication Type:

Journal Article

Source:

Minerals, Volume 14, Number 12 (2024)

ISBN:

2075-163X

URL:

https://www.mdpi.com/2075-163X/14/12/1293

Keywords:

Archean, Chibougamau pluton, Fluid inclusions, geochronology, Greenstone belt, porphyry mineralization, zircon chemistry

Abstract:

<p>The Neoarchean diorite- and tonalite-dominated Chibougamau pluton (Canada) is ideal for case studies dedicated to the petrogenesis and timing of emplacement of fertile magmatic systems and associated Cu-Au porphyry systems. Using whole-rock analyses, geochronology, and zircon chemistry, it is determined that an early magmatic phase (pre-2714 Ma) is derived from a dioritic magma with a moderate ƒO2 (ΔFMQ 0 to +1), which is optimal for transporting Au and Cu, and that diorite is a potentially fertile magma. Field descriptions indicate that the main mineralizing style consists of sulfide-filled hairline fractures and quartz–carbonate veins. This is likely the consequence of fluid circulation facilitated by a well-developed diaclase network formed following the intrusion of magma at about 4–7 km depth in a competent hosting material. The petrographic features of fluid inclusions (FIs), considered with their microthermometric data and evaporate mound chemistry, suggest the exsolution of early CO2-rich fluids followed by the unmixing of later aqueous saline fluids characterized by a magmatic signature (i.e., Na-, Ca-, Fe-, Mn-, Ba-, and Cl-F). The type of magmatism and its oxidation state, age relationships, the nature of mineralization, and fluid chemistry together support a model whereby metalliferous fluids are derived from an intermediate hydrous magma. This therefore enforces a porphyry-type metallogenic model for this Archean setting.</p>