X

Interested in the Harquail School of Earth Sciences?

Fill out this form and we will contact you with details about our programs!

Learn More!
?

Publication Type:

Journal Article

Source:

Minerals, Volume 15, Number 3 (2025)

ISBN:

2075-163X

URL:

https://www.mdpi.com/2075-163X/15/3/327

Keywords:

baryte, siderite, Stable isotopes, Trace elements, Windsor Group

Abstract:

<p>Siderite and baryte are common non-sulphide phases in sedimentary exhalative (SEDEX) deposits, but their formation remains poorly understood. Siderite is important as an exploration vector in some deposits, whereas baryte is important as a S source in some deposits. The past-producing Walton deposit (Nova Scotia, Canada) consists of two ore types: (1) a sulphide body primarily hosted by sideritised Viséan Macumber Formation limestone (0.41 Mt; head grade of 350 g/t Ag, 4.28% Pb, 1.29% Zn, and 0.52% Cu), and (2) an overlying massive baryte body of predominantly microcrystalline baryte (4.5 Mt of &gt;90% baryte). This study used optical microscopy, SEM-EDS, cathodoluminescence (CL), LA-ICP-MS, and SIMS sulphur isotope analysis of siderite and baryte to elucidate their origin and role in deposit formation. Siderite replaces limestone and contains ≤9 wt. % Mn, is LREE-depleted (PAAS-normalised REEY diagrams), and has low (&lt;20) Y/Ho ratios. Sideritisation occurred due to dissimilatory iron reduction (DIR) that led to the breakdown of Fe-Mn-oxyhydroxides and organic matter, as indicated by light δ13CVPBD values and negative Y anomalies. The baryte body is dominated by a microcrystalline variety that locally develops a radial texture and coarsens to a tabular variety; it also occurs intergrown with, and as veins in, massive sulphides. Based on fluid inclusion data from previous studies, the coarser baryte types grew from a hot (&gt;200 °C) saline (25 wt. % NaCl) fluid containing CO2-CH4 and liquid petroleum. Marine sulphate δ34SVCDT values typical of the Viséan (~15‰) characterise the baryte body and some tabular baryte types, whereas heavier (~20‰) and lighter (~10‰) values typify the remaining tabular types. The variations in tabular baryte relate to distinct zones identified by CL imaging and are attributed to the sulphate-driven anaerobic oxidation of methane (SDAOM) and oxidation of excess H2S after sulphide precipitation. These results highlight the importance of hydrocarbons (methane and organic matter) in the formation of both the siderite and the baryte at Walton and that DIR and the SDAOM can be important contributing processes in the formation of SEDEX deposits.</p>